来 源:DataCharm/作 者:宁俊骐
最近小编在查阅资料的时候发现一个超喜欢的可视化绘制工具- R-smplot,本来想着忙完这段时间给大家直播的时候再系统介绍,但随着对这个工具的学习,还是决定现在就推荐给大家。好了,话不多说,我们直接开始,今天推文的主要内容如下:
- R-smplot包简单介绍
- R-smplot包案例介绍
R-smplot包简单介绍
R-smplot包,sm为 simple(简单)的简称,意为使R进行可视化过程变得简单,而且R-smplot包还完美兼容ggplot2绘图语法,熟悉ggplot2绘图的小伙伴可以快速上手。此外,该包还提供多个绘图函数:
- 多个偏向于统计绘图的函数,如 sm_boxplot 和 sm_violin 函数;
- 多个映射颜色,如: sm_color 和 sm_palette ;
- 多个绘图主题,如 sm_corr_theme 和 sm_minimal 等,
- 还提供大量常见的绘图函数,如 sm_bland_altman 、 sm_raincloud 、和 sm_common_axis 函数。
R-smplot包案例介绍
这一部分,小编通过具体的绘制示例给大家介绍 smplot包优秀的绘图函数、映射颜色和绘图主题,让小伙伴们对这个可视化包有所了解,详细内容如下:
R-smplot包映射颜色介绍
S-smplot包提供了非常“小清新”的颜色映射函数,这里直接给出样式,如下:
smplot’s color paletteR-smplot包映绘图主题介绍
R-smplot包提供的绘图主题也是非常多,下面就依次绘制 不同主题的可视化效果:
- ggplot2默认主题
library(smplot)
library(tidyverse)
library(ggtext)
library(hrbrthemes)
# ggplot2默认主题
p1 <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = class)) +
geom_point(size = 2)
ggplot2默认主题
- sm_corr_theme
p1 + sm_corr_theme
sm_corr_theme
还可以在主题基础上进行修改和选择映射颜色:
p2 <- p1 + sm_corr_theme(borders = FALSE, legends = FALSE) +
scale_color_manual(values = sm_palette(7))
sm_corr_theme set
- sm_minimal
p1 + sm_minimal
sm_minimal
- sm_slope_theme
p1 + sm_slope_theme
sm_slope_theme
R-smplot包常见绘图函数介绍
这一部分,小编列举出R-smplots包的常见绘图函数,如下:
「详细内容如下:」
- sm_statCorr
p1 <- ggplot(data = mtcars, mapping = aes(x = drat, y = mpg)) +
geom_point(shape = 21, fill = sm_color( 'green'), color = 'white', size = 3)
p1 + sm_corr_theme +
sm_statCorr(color = sm_color( 'green'),
line_type = 'solid',
label_x = 3.5,
label_y = 30,
text_size = 5)
sm_statCorr example
- sm_bar
set.seed(11) # generate random data
method1 = c(rnorm(19,0,1),2.5)
method2 = c(rnorm(19,0,1),2.5)
Subject <- rep(paste0( 'S',seq(1:20)), 2)
Data <- data.frame(Value = matrix(c(method1,method2),ncol=1))
Method <- rep(c( 'Method 1', 'Method 2'), each = length(method1))
df_general <- cbind(Subject, Data, Method)
# 可视化
ggplot(data = df_general, mapping = aes(x = Method, y = Value, fill = Method)) +
sm_bar(shape = 21, color = 'white', bar_fill_color = 'gray80') +
scale_fill_manual(values = sm_color( 'crimson', 'green'))
sm_bar Example
- sm_boxplot
set.seed(1) # generate random data
day1 = rnorm(16,0,1)
day2 = rnorm(16,5,1)
Subject <- rep(paste0( 'S',seq(1:16)), 2)
Data <- data.frame(Value = matrix(c(day1,day2),ncol=1))
Day <- rep(c( 'Day 1', 'Day 2'), each = length(day1))
df <- cbind(Subject, Data, Day)
# 可视化
ggplot(data = df, mapping = aes(x = Day, y = Value)) +
sm_boxplot(fill = 'black')
sm_boxplot Example01
此外,还可以进行修改:
ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Day)) +
sm_boxplot(shape = 21, point_size = 4, notch = 'TRUE', alpha = 0.5) +
scale_fill_manual(values = sm_color( 'blue', 'orange'))
sm_boxplot Example02
- sm_violin
ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Subject,
group = Day, color = Day)) +
sm_violin(shape = 21, color = 'white', point_alpha = 0.6) +
scale_fill_manual(values = sm_palette(16)) +
scale_color_manual(values = sm_color( 'blue', 'orange'))
sm_violin Example
- sm_slope
ggplot(data = df, mapping = aes(x = Day, y = Value, group = Subject)) +
sm_slope(labels = c( 'Day 1', 'Day 2'))
sm_slope Example
- sm_bland_altman
set.seed(1)
first <- rnorm(20)
second <- rnorm(20)
df3 <- as_tibble(cbind(first,second))
res <- sm_statBlandAlt(df3 $first,df3 $second)
sm_bland_altman(df3 $first, df3 $second, shape = 21, fill = sm_color( 'green'), color = 'white') +
scale_y_continuous(limits = c(-4,4)) +
annotate( 'text', label = 'Mean', x = -1, y = res $mean_diff+ 0.4) +
annotate( 'text', label = signif(res $mean_diff,3), x = -1, y = res $mean_diff- 0.4) +
annotate( 'text', label = 'Upper limit', x = 1.2, y = res $upper_limit+ 0.4) +
annotate( 'text', label = signif(res $upper_limit,3), x = 1.2, y = res $upper_limit- 0.4) +
annotate( 'text', label = 'Lower limit', x = 1.2, y = res $lower_limit+ 0.4) +
annotate( 'text', label = signif(res $lower_limit,3), x = 1.2, y = res $lower_limit-0.4)
sm_bland_altman Example
- sm_raincloud
set.seed(2) # generate random data
day1 = rnorm(20,0,1)
day2 = rnorm(20,5,1)
day3 = rnorm(20,6,1.5)
day4 = rnorm(20,7,2)
Subject <- rep(paste0( 'S',seq(1:20)), 4)
Data <- data.frame(Value = matrix(c(day1,day2,day3,day4),ncol=1))
Day <- rep(c( 'Day 1', 'Day 2', 'Day 3', 'Day 4'), each = length(day1))
df2 <- cbind(Subject, Data, Day)
#可视化
sm_raincloud(data = df2, x = Day, y = Value, boxplot_alpha = 0.5,
color = 'white', shape = 21, sep_level = 2) +
scale_x_continuous(limits = c(0.25,4.75), labels = c( '1', '2', '3', '4'), breaks = c(1,2,3,4)) +
xlab( 'Day') +
scale_color_manual(values = rep( 'transparent',4)) +
scale_fill_manual(values = sm_palette(4))
sm_raincloud Example
到这里,关于R-smplot包的绘图功能就简单介绍了一下。
总结
今天介绍的这个优秀的可视化工具 R-smplot包功能还是非常强大的,通过介绍也可以看出该包更倾向于 统计绘图,这也是我们在绘制学术图表常用的图表类型,希望小伙伴们可以学习一下~
- END -
- 本文固定链接: https://oversea.maimengkong.com/image/1273.html
- 转载请注明: : 萌小白 2022年11月18日 于 卖萌控的博客 发表
- 百度已收录