这个小清新统计可视化工具太赞了~~
卖萌控的博客
点击这里进入电脑版页面!体验更好
这个小清新统计可视化工具太赞了~~
2022-11-18 萌小白


来 源:DataCharm/作 者:宁俊骐



最近小编在查阅资料的时候发现一个超喜欢的可视化绘制工具- R-smplot,本来想着忙完这段时间给大家直播的时候再系统介绍,但随着对这个工具的学习,还是决定现在就推荐给大家。好了,话不多说,我们直接开始,今天推文的主要内容如下:




R-smplot包简单介绍



R-smplot包,sm为 simple(简单)的简称,意为使R进行可视化过程变得简单,而且R-smplot包还完美兼容ggplot2绘图语法,熟悉ggplot2绘图的小伙伴可以快速上手。此外,该包还提供多个绘图函数:




R-smplot包案例介绍



这一部分,小编通过具体的绘制示例给大家介绍 smplot包优秀的绘图函数、映射颜色和绘图主题,让小伙伴们对这个可视化包有所了解,详细内容如下:



R-smplot包映射颜色介绍



S-smplot包提供了非常“小清新”的颜色映射函数,这里直接给出样式,如下:






smplot’s color paletteR-smplot包映绘图主题介绍



R-smplot包提供的绘图主题也是非常多,下面就依次绘制 不同主题的可视化效果:




library(smplot)



library(tidyverse)



library(ggtext)



library(hrbrthemes)



# ggplot2默认主题



p1 <- ggplot(data = mpg, mapping = aes(x = displ, y = hwy, color = class)) +



geom_point(size = 2)






ggplot2默认主题




p1 + sm_corr_theme






sm_corr_theme



还可以在主题基础上进行修改和选择映射颜色:



p2 <- p1 + sm_corr_theme(borders = FALSE, legends = FALSE) +



scale_color_manual(values = sm_palette(7))






sm_corr_theme set




p1 + sm_minimal






sm_minimal




p1 + sm_slope_theme






sm_slope_theme



R-smplot包常见绘图函数介绍



这一部分,小编列举出R-smplots包的常见绘图函数,如下:






「详细内容如下:」




p1 <- ggplot(data = mtcars, mapping = aes(x = drat, y = mpg)) +



geom_point(shape = 21, fill = sm_color( 'green'), color = 'white', size = 3)



p1 + sm_corr_theme +



sm_statCorr(color = sm_color( 'green'),



line_type = 'solid',



label_x = 3.5,



label_y = 30,



text_size = 5)






sm_statCorr example




set.seed(11) # generate random data



method1 = c(rnorm(19,0,1),2.5)



method2 = c(rnorm(19,0,1),2.5)



Subject <- rep(paste0( 'S',seq(1:20)), 2)



Data <- data.frame(Value = matrix(c(method1,method2),ncol=1))



Method <- rep(c( 'Method 1', 'Method 2'), each = length(method1))



df_general <- cbind(Subject, Data, Method)



# 可视化



ggplot(data = df_general, mapping = aes(x = Method, y = Value, fill = Method)) +



sm_bar(shape = 21, color = 'white', bar_fill_color = 'gray80') +



scale_fill_manual(values = sm_color( 'crimson', 'green'))






sm_bar Example




set.seed(1) # generate random data



day1 = rnorm(16,0,1)



day2 = rnorm(16,5,1)



Subject <- rep(paste0( 'S',seq(1:16)), 2)



Data <- data.frame(Value = matrix(c(day1,day2),ncol=1))



Day <- rep(c( 'Day 1', 'Day 2'), each = length(day1))



df <- cbind(Subject, Data, Day)



# 可视化



ggplot(data = df, mapping = aes(x = Day, y = Value)) +



sm_boxplot(fill = 'black')






sm_boxplot Example01



此外,还可以进行修改:



ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Day)) +



sm_boxplot(shape = 21, point_size = 4, notch = 'TRUE', alpha = 0.5) +



scale_fill_manual(values = sm_color( 'blue', 'orange'))






sm_boxplot Example02




ggplot(data = df, mapping = aes(x = Day, y = Value, fill = Subject,



group = Day, color = Day)) +



sm_violin(shape = 21, color = 'white', point_alpha = 0.6) +



scale_fill_manual(values = sm_palette(16)) +



scale_color_manual(values = sm_color( 'blue', 'orange'))






sm_violin Example




ggplot(data = df, mapping = aes(x = Day, y = Value, group = Subject)) +



sm_slope(labels = c( 'Day 1', 'Day 2'))






sm_slope Example




set.seed(1)



first <- rnorm(20)



second <- rnorm(20)



df3 <- as_tibble(cbind(first,second))



res <- sm_statBlandAlt(df3 $first,df3 $second)



sm_bland_altman(df3 $first, df3 $second, shape = 21, fill = sm_color( 'green'), color = 'white') +



scale_y_continuous(limits = c(-4,4)) +



annotate( 'text', label = 'Mean', x = -1, y = res $mean_diff+ 0.4) +



annotate( 'text', label = signif(res $mean_diff,3), x = -1, y = res $mean_diff- 0.4) +



annotate( 'text', label = 'Upper limit', x = 1.2, y = res $upper_limit+ 0.4) +



annotate( 'text', label = signif(res $upper_limit,3), x = 1.2, y = res $upper_limit- 0.4) +



annotate( 'text', label = 'Lower limit', x = 1.2, y = res $lower_limit+ 0.4) +



annotate( 'text', label = signif(res $lower_limit,3), x = 1.2, y = res $lower_limit-0.4)






sm_bland_altman Example




set.seed(2) # generate random data



day1 = rnorm(20,0,1)



day2 = rnorm(20,5,1)



day3 = rnorm(20,6,1.5)



day4 = rnorm(20,7,2)



Subject <- rep(paste0( 'S',seq(1:20)), 4)



Data <- data.frame(Value = matrix(c(day1,day2,day3,day4),ncol=1))



Day <- rep(c( 'Day 1', 'Day 2', 'Day 3', 'Day 4'), each = length(day1))



df2 <- cbind(Subject, Data, Day)



#可视化



sm_raincloud(data = df2, x = Day, y = Value, boxplot_alpha = 0.5,



color = 'white', shape = 21, sep_level = 2) +



scale_x_continuous(limits = c(0.25,4.75), labels = c( '1', '2', '3', '4'), breaks = c(1,2,3,4)) +



xlab( 'Day') +



scale_color_manual(values = rep( 'transparent',4)) +



scale_fill_manual(values = sm_palette(4))






sm_raincloud Example



到这里,关于R-smplot包的绘图功能就简单介绍了一下。



总结



今天介绍的这个优秀的可视化工具 R-smplot包功能还是非常强大的,通过介绍也可以看出该包更倾向于 统计绘图,这也是我们在绘制学术图表常用的图表类型,希望小伙伴们可以学习一下~



- END -



发表评论:
昵称

邮件地址 (选填)

个人主页 (选填)

内容